113 research outputs found

    Deep representation learning for human motion prediction and classification

    Full text link
    Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.Comment: This paper is published at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation

    Full text link
    Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation after such a musculoskeletal injury remains a prolonged process with a very variable outcome. Accurately predicting rehabilitation outcome is crucial for treatment decision support. However, it is challenging to train an automatic method for predicting the ATR rehabilitation outcome from treatment data, due to a massive amount of missing entries in the data recorded from ATR patients, as well as complex nonlinear relations between measurements and outcomes. In this work, we design an end-to-end probabilistic framework to impute missing data entries and predict rehabilitation outcomes simultaneously. We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines. The proposed method demonstrates its clear superiority over traditional methods which typically perform imputation and prediction in two separate stages

    Learn the Time to Learn: Replay Scheduling in Continual Learning

    Full text link
    Replay methods have shown to be successful in mitigating catastrophic forgetting in continual learning scenarios despite having limited access to historical data. However, storing historical data is cheap in many real-world applications, yet replaying all historical data would be prohibited due to processing time constraints. In such settings, we propose learning the time to learn for a continual learning system, in which we learn replay schedules over which tasks to replay at different time steps. To demonstrate the importance of learning the time to learn, we first use Monte Carlo tree search to find the proper replay schedule and show that it can outperform fixed scheduling policies in terms of continual learning performance. Moreover, to improve the scheduling efficiency itself, we propose to use reinforcement learning to learn the replay scheduling policies that can generalize to new continual learning scenarios without added computational cost. In our experiments, we show the advantages of learning the time to learn, which brings current continual learning research closer to real-world needs

    Full-Glow: Fully conditional Glow for more realistic image generation

    Full text link
    Autonomous agents, such as driverless cars, require large amounts of labeled visual data for their training. A viable approach for acquiring such data is training a generative model with collected real data, and then augmenting the collected real dataset with synthetic images from the model, generated with control of the scene layout and ground truth labeling. In this paper we propose Full-Glow, a fully conditional Glow-based architecture for generating plausible and realistic images of novel street scenes given a semantic segmentation map indicating the scene layout. Benchmark comparisons show our model to outperform recent works in terms of the semantic segmentation performance of a pretrained PSPNet. This indicates that images from our model are, to a higher degree than from other models, similar to real images of the same kinds of scenes and objects, making them suitable as training data for a visual semantic segmentation or object recognition system.Comment: 17 pages, 12 figure
    corecore